Abstract
The incorporation of new equations to extend the applicability of open-source computational fluid dynamics (CFD) software according to the user’s needs must be complemented with code verification and validation with a representative case. This paper presents the development and validation of an OpenFOAM®-based solver suitable for simulating multiphase fluid flow considering three fluid phases with different densities and temperatures, i.e., two miscible liquids and air. A benchmark “dam-break” experiment was performed to validate the solver. Ten thermistors measured temperature variations in different locations of the experimental model and the temperature time series were compared against those of numerical probes in analogous locations. The accuracy of the temperature field assessment considered three different turbulence models: (a) zero-equation, (b) k-omega (Reynolds averaged simulation; RAS), and (c) large eddy simulation (LES). The simulations exhibit a maximum time-average relative and absolute errors of 9.3% and 3.1 K, respectively; thus, the validation tests proved to achieve an adequate performance of the numerical model. The solver developed can be applied in the modeling of thermal discharges into water bodies.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference31 articles.
1. Experimental validation of multiphase flow models and testing of multiphase flow meters: a critical review of flow loops worldwide
2. Multiphase Flow Dynamics 1—Fundamentals;Kolev,2011
3. Code Verification of unsteady flow solvers with method of manufactured solutions;Eça;Int. J. Offshore Polar Eng.,2008
4. Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures,2008
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献