Abstract
The aim of this study was to determine the Cd2+ removal capacity of a biosorbent system formed by Saccharomyces cerevisiae in calcium alginate beads. The adsorption of Cd2+ by a S. cerevisiae–alginate system was tested either by batch or fixed-bed column experiments. The S. cerevisiae–alginate system was characterized using dynamic light scattering (DLS, zeta potential), size, hardness, scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy. Beads of the S. cerevisiae–alginate system showed a spherical–elliptical morphology, diameter of 1.62 ± 0.02 mm, 96% moisture, negative surface charge (−29.3 ± 2.57 mV), and texture stability during storage at 4 °C for 20 days. In batch conditions, the system adsorbed 4.3 µg of Cd2+/g of yeast–alginate beads, using a Cd2+ initial concentration of 5 mg/L. Adsorption capacity increased to 15.4 µg/g in a fixed-bed column system, removing 83% of total Cd2+. In conclusion, the yeast–alginate system is an efficient option for the removal of cadmium at low concentrations in drinking water.
Subject
General Materials Science
Reference56 articles.
1. A brief review on the effect of cadmium toxicity: From cellular to organ level;Sarkar;Int. J. Biotechnol. Res.,2013
2. Cadmium in Drinking Water. Background Document for Preparation of WHO Guidelines for Drinking-Water Quality,2011
3. Agents Classified by the IARC Monographs,2018
4. Drinking Water Standards and Health Advisories,2018
5. A comprehensive review on Cd(II) removal from aqueous solution
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献