Low-Carbon Tour Route Algorithm of Urban Scenic Water Spots Based on an Improved DIANA Clustering Model

Author:

Zhou XiaoORCID,Zhang DeORCID,Tian JiangpengORCID,Su MingzhanORCID

Abstract

Aiming at the problems in current research into low-carbon and water scenery tourism, this paper brings forward a low-carbon tour route algorithm of urban scenic water spots based on an improved Divisive Analysis clustering model. Based on the ecological attributes of scenic water spots, the clustering model is set up to create scenic spot clusters. Via the clusters, the low-carbon tour route algorithm of urban scenic water spots based on the optimal energy conservation and emission reduction mode is proposed, and it provides the optimal scenic water spots and low-carbon tour routes for tourists. The model can thus realize the optimization of vehicle exhaust emission in urban travel and reduce exhaust emission damage to urban water bodies and natural environments. In order to verify the advantages of the proposed algorithm, this paper performs an experiment to compare the proposed algorithm with the frequently used route planning methods by tourists. The experimental results show that the proposed algorithm has great advantages in energy conservation, emission reduction and low-carbon travel and can reduce the exhaust emission and the damage to the urban water bodies and the natural environment, realizing low-carbon tourism. The main findings and contributions of the proposed work are as follows. First, an improved clustering algorithm is set up, and the urban scenic water spots are clustered according to attribute data, which could optimize the scenic spot recommendation spatial model. Second, combining with the specific characteristics of scenic water spots, the scenic spot mining and matching algorithm is set up to satisfy tourists’ needs. Third, a method that could reduce emission exhaust by optimizing self-driving tour routes is proposed, which could control and reduce the damage to urban environments and protect water ecosystems. The proposed algorithm could be used as the embedded algorithm of tour recommendation systems or the reference algorithm for planning urban tourism transportation. Especially in peak tourism season, it could be used as an effective method for tourism and traffic management departments to direct traffic flow.

Funder

Independent research project of State Key Laboratory of Geo-Information Engineering

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3