Assessment of a Novel Real-Time Bio-Liquor Circulation System for Manure Management and Mitigation of Odor Potential in Swine Farming

Author:

Kim Seungsoo1ORCID,Shim Soomin1ORCID,Won Seunggun2ORCID,Ra Changsix1ORCID

Affiliation:

1. Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea

2. Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Republic of Korea

Abstract

Recently, circulating biologically treated manure in slurry pits has been used as an odor reduction technology, but few successful results have been reported, due to the lack of proper control strategies for bioreactors. This study was conducted to investigate the performance of the developed real-time controlled bio-liquor circulation system (BCS) at farm scale. The BCS was operated sequentially as per swine manure inflow (anoxic, aerobic, and settling) circulation to the slurry pit. Each operational phase was self-adjusted in real-time using a novel algorithm for detecting the control point on the oxidation reduction potential (ORP) and pH (mV)–time profiles, the nitrogen break point (NBP), and the nitrate knee point (NKP) in the aerobic and anoxic phases, respectively. The NH4-N in the slurry manure was thoroughly removed (100%) in the bioreactor, optimizing the duration of each operational phase by accurately detecting real-time control points. The newly developed real-time BCS decreased the nitrogen and organic matter in the slurry pit by >70%, and the potential ammonia and methane emissions by 75% and 95%, respectively. This study highlights that improved BCS that utilizes ORP tracking and pH (mV)–time profiles can effectively optimize BCS operation, and thereby reduce malodor and GHG emissions from swine farms.

Funder

CJ FEED & CARE Corporation

Kangwon National University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3