The Influence of Room and Pillar Method Geometry on the Deposit Utilization Rate and Rock Bolt Load

Author:

Skrzypkowski KrzysztofORCID

Abstract

In this article, a model of ore deposit in form of a lense carried out in the MineScape program, is presented. The lense had a thickness of 30 m, length along the strike 200 m, and the depth buried was for 80 m to 110 m below the surface. In the first layer, counting from the lowest level, a room and pillar method with variable geometry was designed. The width and length dimensions for rooms and pillars were: 4 m, 5 m and 6 m, respectively. For the selected part of the deposit, three variants of the system with variable geometry of rooms and pillars were designed, for which the deposit utilization coefficient was determined. The next stage of the research was to determine the influence of the geometry of the pillars and rooms on the range of the rock destruction zone around room excavations. For this purpose, numerical calculations using the three-dimensional Examine 3D program, based on the boundary element method, were made. The results of numerical tests were used to calculate the load of the rock bolt support, which is currently used in the zinc and lead underground mine “Olkusz-Pomorzany” in Poland. Currently in the mine, the bolt spacing is 1 m × 1 m, and the technology for fixing the bolt rod is based on resin cartridges that completely fill the bolt hole. In order to spread the spacing of the rock bolt support and to apply segmental fixing of the bolt rod, in the laboratory tests, rock bolt supports with increased strength were tested. Based on the results obtained, it was found that the rock bolt can be installed segmentally, using a cement grout, and its spacing can be increased to 2 m.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3