Electricity Consumption Prediction of Solid Electric Thermal Storage with a Cyber–Physical Approach

Author:

Ji HuichaoORCID,Yang Junyou,Wang HaixinORCID,Tian Kun,Okoye Martin Onyeka,Feng Jiawei

Abstract

This paper proposes a cyber–physical approach to enhance the prediction accuracy of electricity consumption of solid electric thermal storage (SETS) system, which integrates a physical model and a data-based cyber model. In the cyber–physical model, the prediction error of the physical model is used as an input of the cyber model to further calibrate the prediction error. Firstly, customers’ behavior characteristics are extracted by the integration of K-means and one-versus-one support vector machine. Secondly, based on the behavior characteristics and ambient temperature, the physical model is developed to predict daily electricity consumption. Finally, the error levels of physical model are classified, together with the temperature and prediction values of the physical model, are selected as the inputs of the cyber model using the back propagation (BP) neural network to calibrate the results of the physical model. The effectiveness of the proposed cyber–physical model (CPM) is verified by a 1 MW SETS system. The simulation results show that, compared with the physical model (PM) and cyber model (CM), the maximum relative errors (MRE) with the CPM are reduced to 25.4% and 4.8%, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3