A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal Building Management

Author:

Petroșanu Dana-MihaelaORCID,Căruțașu GeorgeORCID,Căruțașu Nicoleta Luminița,Pîrjan AlexandruORCID

Abstract

Lately, many scientists have focused their research on subjects like smart buildings, sensor devices, virtual sensing, buildings management, Internet of Things (IoT), artificial intelligence in the smart buildings sector, improving life quality within smart homes, assessing the occupancy status information, detecting human behavior with a view to assisted living, maintaining environmental health, and preserving natural resources. The main purpose of our review consists of surveying the current state of the art regarding the recent developments in integrating supervised and unsupervised machine learning models with sensor devices in the smart building sector with a view to attaining enhanced sensing, energy efficiency and optimal building management. We have devised the research methodology with a view to identifying, filtering, categorizing, and analyzing the most important and relevant scientific articles regarding the targeted topic. To this end, we have used reliable sources of scientific information, namely the Elsevier Scopus and the Clarivate Analytics Web of Science international databases, in order to assess the interest regarding the above-mentioned topic within the scientific literature. After processing the obtained papers, we finally obtained, on the basis of our devised methodology, a reliable, eloquent and representative pool of 146 papers scientific works that would be useful for developing our survey. Our approach provides a useful up-to-date overview for researchers from different fields, which can be helpful when submitting project proposals or when studying complex topics such those reviewed in this paper. Meanwhile, the current study offers scientists the possibility of identifying future research directions that have not yet been addressed in the scientific literature or improving the existing approaches based on the body of knowledge. Moreover, the conducted review creates the premises for identifying in the scientific literature the main purposes for integrating Machine Learning techniques with sensing devices in smart environments, as well as purposes that have not been investigated yet.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3