Author:
Ge Yujia,Nan Yurong,Bai Lijun
Abstract
For power management in the energy harvesting wireless sensor networks (EH-WSNs), it is necessary to know in advance the collectable solar energy data of each node in the network. Our work aims to improve the accuracy of solar energy predictions. Therefore, several existing prediction algorithms in the literature are surveyed, and then this paper proposes a solar radiance prediction model based on a long short-term memory (LSTM) neural network in combination with the signal processing algorithm empirical mode decomposition (EMD). The EMD method is used to decompose the time sequence data into a series of relatively stable component sequences. For improving the prediction accuracy further by utilizing the current day solar radiation profile in one-hour-ahead predictions, similar solar radiation profile data were selected for training LSTM neural networks. Simulation results show that the hybrid model achieves better prediction performance than traditional prediction methods, such as the exponentially-weighted moving average (EWMA), weather conditioned moving average (WCMA), and only LSTM models.
Funder
Department of Education of Zhejiang Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献