A Hybrid Prediction Model for Solar Radiation Based on Long Short-Term Memory, Empirical Mode Decomposition, and Solar Profiles for Energy Harvesting Wireless Sensor Networks

Author:

Ge Yujia,Nan Yurong,Bai Lijun

Abstract

For power management in the energy harvesting wireless sensor networks (EH-WSNs), it is necessary to know in advance the collectable solar energy data of each node in the network. Our work aims to improve the accuracy of solar energy predictions. Therefore, several existing prediction algorithms in the literature are surveyed, and then this paper proposes a solar radiance prediction model based on a long short-term memory (LSTM) neural network in combination with the signal processing algorithm empirical mode decomposition (EMD). The EMD method is used to decompose the time sequence data into a series of relatively stable component sequences. For improving the prediction accuracy further by utilizing the current day solar radiation profile in one-hour-ahead predictions, similar solar radiation profile data were selected for training LSTM neural networks. Simulation results show that the hybrid model achieves better prediction performance than traditional prediction methods, such as the exponentially-weighted moving average (EWMA), weather conditioned moving average (WCMA), and only LSTM models.

Funder

Department of Education of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3