Autocorrelation Ensemble Average of Larger Amplitude Impact Transients for the Fault Diagnosis of Rolling Element Bearings

Author:

Hu LeiORCID,Xu YuandongORCID,Gu FengshouORCID,He Jing,Hu Niaoqing,Ball AndrewORCID

Abstract

Rolling element bearings are one of the critical elements in rotating machinery of energy engineering systems. A defective roller of bearing moves in and out of the load zone during each revolution of the cage. Larger amplitude impact transients (LAITs) are produced when the defective roller passes the load zone centre and the defective area strikes the inner or outer races. A series of LAIT segments with higher signal to noise ratio are separated from a continuous vibration signal according to the bearing geometry and kinematics. In order to eliminate the phase errors between different LAIT segments that can arise from rotational speed fluctuations and roller slippages, unbiased autocorrelation is introduced to align the phases of LAIT segments. The unbiased autocorrelation signals make the ensemble averaging more accurate, and hence, archive enhanced diagnostic signatures, which are denoted as LAIT-AEAs for brevity. The diagnostic method based on LAIT separation and autocorrelation ensemble average (AEA) is evaluated with the datasets captured from real bearings of two different experiment benches. The validation results of the LAIT-AEAs are compared with the squared envelope spectrums (SESs) yielded based on two state-of-the-art techniques of Fast Kurtogram and Autogram.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference24 articles.

1. Review of Condition Monitoring of Rolling Element Bearing Using Vibration Analysis and Other Techniques

2. AN ANALYTICAL MODEL FOR THE PREDICTION OF THE VIBRATION RESPONSE OF ROLLING ELEMENT BEARINGS DUE TO A LOCALIZED DEFECT

3. Vibration-Based Condition Monitoring: Industrial, Aerospace and Automotive Applications;Randall,2011

4. Application of high-frequency resonance techniques for bearing diagnostics in helicopter gearboxes;Darlow,1974

5. Vibration monitoring of rolling element bearings by the high-frequency resonance technique — a review

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3