Abstract
An aircraft engine (aeroengine) operates in an extremely harsh environment, causing the working state of the engine to constantly change. As a result, the engine is prone to various kinds of wear faults. This paper proposes a new intelligent method for the diagnosis of aeroengine wear faults based on oil analysis, in which broad learning system (BLS) and ensemble learning models are introduced and integrated into the bagging-BLS model, in which 100 sub-BLS models are established, which are further optimized by ensemble learning. Experiments are conducted to verify the proposed method, based on the analysis of oil data, in which the random forest and single BLS algorithms are used for comparison. The results show that the output accuracy of the proposed method is stable (at 0.988), showing that the bagging-BLS model can improve the accuracy and reliability of engine wear fault diagnosis, reflecting the development trend of fault diagnosis in implementing intelligent technology.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference40 articles.
1. Adaptive sliding mode control for uncertain aero-engine distributed control system;Ren;J. Aerosp. Power,2017
2. Failure Assessment of Aero-engine Support Structure due to Blade-off;Li;Trans. Nanjing Univ. Aeronaut. Astronaut.,2018
3. Sensor fault diagnosis of aero-engine based on divided flight status
4. Design of an Electromagnetic Variable Valve Train with a Magnetorheological Buffer
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献