UV-Enhanced Humidity Sensing of Chitosan–SnO2 Hybrid Nanowires

Author:

Sisman OrhanORCID,Kaur NavpreetORCID,Sberveglieri Giorgio,Núñez-Carmona EstefaniaORCID,Sberveglieri VeronicaORCID,Comini ElisabettaORCID

Abstract

The surface of SnO2 nanowires was functionalized by chitosan for the development of room-temperature conductometric humidity sensors. SnO2 nanowires were synthesized by the seed-mediated physical-vapor-deposition (PVD) method. Chitosan layers were deposited on top of the SnO2 nanowires by spin coating. Surface morphology, crystal structure, and optical properties of the synthesized hybrid nanostructure were investigated by scanning electron microscope, grazing incidence X-ray diffraction, and UV–Vis absorption measurements. During electrical conductivity measurements, the hybrid nanostructure showed unusual behavior towards various relative humidity (RH) concentrations (25%, 50%, 75%), under UV-light irradiation, and in dark conditions. The highest sensor responses were recorded towards an RH level of 75%, resulting in 1.1 in the dark and 2.5 in a UV-irradiated chamber. A novel conduction mechanism of hybrid nanowires is discussed in detail by comparing the sensing performances of chitosan film, SnO2 nanowires, and chitosan@SnO2 hybrid nanostructures.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3