Abstract
Kaolin and bentonite (nanoclay NM-600) are nanostructured aluminosilicates that share a similar chemical composition, platelet-like morphology, and high binding capacity for biomolecules. To investigate if these material-based criteria allow for a common grouping, we prepared particle suspensions of kaolin and bentonite with a similar hydrodynamic diameter and administered them to NR8383 alveolar macrophages in vitro and also to a rat lung using quartz DQ12 as a reference material. Bentonite was far more bioactive in vitro, indicated by a lower threshold for the release of enzymes, tumor necrosis factor α, and H2O2. In addition, in the lung, the early effects of bentonite exceeded those of kaolin and even those of quartz, due to strongly increased numbers of inflammatory cells, and elevated concentrations of total protein and fibronectin within the bronchoalveolar lavage fluid. The pro-inflammatory effects of bentonite decreased over time, although assemblies of particle-laden alveolar macrophages (CD68 positive), numerous type-2 epithelial cells (immunopositive for pro-surfactant protein C), and hypertrophic lung epithelia persisted until day 21. At this point in time, kaolin-treated lungs were completely recovered, whereas quartz DQ12 had induced a progressive inflammation. We conclude that bentonite is far more bioactive than equally sized kaolin. This argues against a common grouping of aluminosilicates, previously suggested for different kaolin qualities.
Subject
General Materials Science,General Chemical Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献