Mobility of Cellulose Nanocrystals in Porous Media: Effects of Ionic Strength, Iron Oxides, and Soil Colloids

Author:

Xu ShuangORCID,Shen Chongyang,Zhang Xueyong,Chen XijuanORCID,Radosevich Mark,Wang SiqunORCID,Zhuang JieORCID

Abstract

Understanding the dispersivity and migration of cellulose nanocrystals (CNCs) in porous media is important for exploring their potential for soil and water remediation. In this study, a series of saturated column experiments were conducted to investigate the coupled effects of ionic strength, iron oxides (hematite), and soil colloids on the transport of CNCs through quartz sand and natural soils (red earth and brown earth). Results showed that CNCs had high mobility in oxide-free sand and that iron oxide coating reduced the mobility of CNCs. An analysis of Derjaguin-Landau-Verwey-Overbeek interactions indicated that CNCs exhibited a deep primary minimum, nonexistent maximum repulsion and secondary minimum on hematite-coated sand, favorable for the attachment of CNCs. The maximum effluent percentage of CNCs was 96% in natural soils at 5 mM, but this value decreased to 4% at 50 mM. Soil colloids facilitated the transport of CNCs in brown earth with larger effect at higher ionic strength. The ionic strength effect was larger in natural soils than sand and in red earth than brown earth. The study showed that CNCs can travel 0.2 m to 72 m in porous media, depending on soil properties, solution chemistry, and soil colloids.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3