Abstract
LENS (Light Emitting Nano-pixel Structure), a new nano-metric device, was designed, simulated, and modeled for feasibility analysis, with the challenge of combining high resolution and high brightness for display, essentially adapted for Augmented Reality (AR) and Virtual Reality. The device is made of two parts: The first one is a reflective nano-cone Light Emitting Device (LED) structure to reduce the Total Internal Reflection effects (TIR), and to enable improved light extraction efficiency. The second part is a Compound Parabolic Concentrator (CPC) above the nano-LED to narrow the outgoing light angular distribution so most of the light would be “accepted” by an imaging system. Such a way is drastically limiting any unnecessary light loss. Our simulations show that the total light intensity gain generated by each part of the pixel is at least 3800% when compared to a typical flat LED. It means that, for the same electrical power consumption, the battery life duration is increased by 38. Furthermore, this improvement significantly decreases the display thermal radiation by at least 300%. Since pixel resolution is critical to offer advanced applications, an extensive feasibility study was performed, using the LightTools software package for ray tracing optimization. In addition to the simulation results, an analytical model was developed. This new device holds the potential to change the efficiency for military, professional and consumer applications, and can serve as a game changer.
Subject
General Materials Science,General Chemical Engineering
Reference34 articles.
1. Global Market Shipment Share Held by LCD TV Manufacturers from 2008 to 2018https://www.statista.com/statistics/267095/global-market-share-of-lcd-tv-manufacturers
2. Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors;Betancourt,2006
3. Lumus Transparent Displayshttps://lumusvision.com/
4. A New Vision for Comptinghttps://www.microsoft.com/en-us/hololens
5. Near Eye Displays (NEDs): Gaps In Pixel Sizeshttps://www.kguttag.com/2017/06/07/gaps-in-pixel-sizes
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献