Design and Modeling of Light Emitting Nano-Pixel Structure (LENS) for High Resolution Display (HRD) in a Visible Range

Author:

Eisenfeld Tsion,Karsenty AviORCID

Abstract

LENS (Light Emitting Nano-pixel Structure), a new nano-metric device, was designed, simulated, and modeled for feasibility analysis, with the challenge of combining high resolution and high brightness for display, essentially adapted for Augmented Reality (AR) and Virtual Reality. The device is made of two parts: The first one is a reflective nano-cone Light Emitting Device (LED) structure to reduce the Total Internal Reflection effects (TIR), and to enable improved light extraction efficiency. The second part is a Compound Parabolic Concentrator (CPC) above the nano-LED to narrow the outgoing light angular distribution so most of the light would be “accepted” by an imaging system. Such a way is drastically limiting any unnecessary light loss. Our simulations show that the total light intensity gain generated by each part of the pixel is at least 3800% when compared to a typical flat LED. It means that, for the same electrical power consumption, the battery life duration is increased by 38. Furthermore, this improvement significantly decreases the display thermal radiation by at least 300%. Since pixel resolution is critical to offer advanced applications, an extensive feasibility study was performed, using the LightTools software package for ray tracing optimization. In addition to the simulation results, an analytical model was developed. This new device holds the potential to change the efficiency for military, professional and consumer applications, and can serve as a game changer.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference34 articles.

1. Global Market Shipment Share Held by LCD TV Manufacturers from 2008 to 2018https://www.statista.com/statistics/267095/global-market-share-of-lcd-tv-manufacturers

2. Study of the Human Eye Working Principle: An impressive high angular resolution system with simple array detectors;Betancourt,2006

3. Lumus Transparent Displayshttps://lumusvision.com/

4. A New Vision for Comptinghttps://www.microsoft.com/en-us/hololens

5. Near Eye Displays (NEDs): Gaps In Pixel Sizeshttps://www.kguttag.com/2017/06/07/gaps-in-pixel-sizes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3