Abstract
Because the strategy of stopping bus lines during an epidemic can negatively impact residents, this study proposes a bus passenger flow control model to optimize the safety of and access to bus transport. The information interaction environment can provide a means for the two-way regulation of buses and passengers. In this model, passengers first request their pick-up and drop-off location, and then the bus feeds back information on whether it accepts the request. Through this method, passenger flow control can be realized through complete information interaction. The study aimed to establish a multi-objective function that minimizes the weighted total cost of the safety cost, the passenger travel cost, and the bus travel cost during an epidemic. The constraints were the full load and riding rates of urban buses in peak periods under the condition of epidemic prevention and control. The results showed that, in the morning peak period, the passenger flow control scheme reduced the passenger infection probability by 17.89%, compared with no passenger flow control scheme. The weighted total cost of the epidemic safety cost, the passenger travel cost, and the bus operation cost was reduced by 8.04%. The optimization effect of the passenger flow control scheme of this model is good, and not only reduces the probability of passengers being infected, but also meets the requirements of epidemic prevention and the travel needs of residents.
Funder
Chongqing Social Science Planning Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献