Abstract
Sustainable development is a scientific development requirement for economic, social, and ecological development and is particularly important for less developed areas to achieve high quality development. Among them, the traffic flow network is a key contributor to economic activity and an inclusive society, as well as influencing the regional ecology, and is an important way to reflect the connection and structure of cities and towns. Based on the literature related to sustainable development, the article takes the passenger traffic data of highways, railways, and aviation of Inner Mongolia in 2021 as the sample and applies the complex network analysis method to analyze the traffic flow network structure and refine the spatial development patterns. The results show that: (1) The highway network is manifested as the connection between the central urban areas and surrounding banner counties and the connection between the adjacent banner counties. The railroad flow is extended and expanded by the railway line with core cities as the development axis. The internal and external connections of Hohhot are the general form of aviation network. The less developed areas under traffic flow network show obvious pointing of core cities and important node towns. (2) Each traffic flow network has the tendency of scale-free and small-world properties. The influence of key town nodes in the traffic flow network is relatively limited. (3) The town connection patterns under the highway, railway, and air flow networks are “single-core and multi-point”, “axis-spoke”, and “hub-spoke”, respectively. The multiple traffic flows support the development framework of towns in less developed areas. This paper also proposes strategies for the regional transport and urban pattern with complementary advantages and high quality and sustainable development in less developed areas.
Funder
National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献