Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China

Author:

Wu Xiaopiao,Zhou Zhongfa,Zhu Meng,Huang Denghong,Zhu Changli,Feng Qing,Luo Wanlin

Abstract

The implementation of China’s ex situ poverty alleviation and relocation project has alleviated the further deterioration of the ecological environment in the relocation area. It can create favorable conditions for the management of ecological problems such as the natural restoration of rocky desertification and soil erosion. Panzhou City, Guizhou Province, is one of the key areas for the implementation of ex situ poverty alleviation and relocation projects in the 13th Five-Year Plan for China’s National Economic and Social Development. The typical ecological problem of karst rocky desertification is an important factor hindering the sustainable development of local society, economy, and ecology. Based on the five-phase remote sensing images and relocated population data, the dynamic change rate, transition matrix, and coupling coordination degree model are utilized to analyze the spatiotemporal changes in rocky desertification in Panzhou City. Meanwhile, the cellular automata (CA) Markov model is used to simulate its future scenarios of rocky desertification. The results show that (i) over the past 20 years, the vegetation coverage in Panzhou has generally increased. The implementation of the ex situ poverty alleviation and relocation project has significantly promoted the reduction of the area and degree of rocky desertification. After relocation (2015–2020), the positive improvement rate of rocky desertification accelerated. (ii) After relocation, the potential rocky desertification (PRD), light rocky desertification (LRD), medium rocky desertification (MRD), severe rocky desertification (SRD), and extreme severe rocky desertification (ESRD) showed a trend of transition to the no rocky desertification (NRD). The improvement effect of rocky desertification is remarkable, and the main contribution is from the PRD and LRD. (iii) The greater the relocation intensity is, the more obvious the improvement effect of the rocky desertification area is, and the higher the corresponding coupling coordination level is. The coupling coordination between LRD and relocation intensity is the highest. (iiii) The forecast results show that by 2025 and 2035, rocky desertification in Panzhou will continue to improve.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference58 articles.

1. Fragile types of Guizhou karst ecologic environments and its exploring and taming;He;J. Guizhou Norm. Univ.,1996

2. The challenge and future of rocky desertification control in karst areas in southwest China

3. The most serious eco-geologically environmental problem in Southwestern China—Karst rocky desertification;Wang;Bull. Miner. Rock Geochem.,2003

4. Use of vegetation to combat desertification and land degradation: Recommendations and guidelines for spatial strategies in Mediterranean lands

5. Rocky desertification in Southwest China: Impacts, causes, and restoration

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3