An Off-Board Multi-Functional Electric Vehicle Charging Station for Smart Homes: Analysis and Experimental Validation

Author:

Monteiro VitorORCID,Lima Pedro,Sousa Tiago J. C.,Martins Julio S.,Afonso Joao L.ORCID

Abstract

This paper presents the analysis and experimental validation of a single-phase off-board multi-functional electric vehicle (EV) charging station (MF-EVCS), which has a single ac interface and two dc interfaces. As innovative aspects, the proposed MF-EVCS handles the interface of the ac power grid, the dc interface of a renewable energy source (RES), as well as the dc interface of an EV to perform dc charging or discharging of the batteries (in off-board grid-to-vehicle (G2V) or vehicle-to-grid (V2G) modes). Considering the power grid, the individual operation modes of the RES and the EV interfaces can be considered. Moreover, a combination of these modes is also possible. Besides, the MF-EVCS has as key innovative aspect the possibility of operating as an active power filter (APF), supporting the operation with reactive power and/or selected current harmonics. This possibility can be associated with any of the previous mentioned modes. These new features are framed in two distinct scenarios: in a smart home, where the ac-side current can be determined as a function of the other electrical appliances; in a smart grid, where the ac-side current can be determined as a requisite of the power grid. The proposed power theory, as well as the current control strategies for both ac-side and dc-side of the MF-EVCS, are presented in the paper for all the possible operation scenarios. A laboratory prototype was developed to validate the proposed MF-EVCS and the experimental results confirm its suitability for smart homes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence assisted Electric Vehicles Fast Charging Station Design using Grid Distribution Network Model;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Reconfigurable Converter Topologies for EV Fast Charging Stations;International Journal of Electrical and Electronics Research;2023-12-19

3. Design of Detection and Assessment System for Electric Vehicle Charging Station Based on Genetic Algorithm;2023 International Conference on Power, Electrical Engineering, Electronics and Control (PEEEC);2023-09-25

4. Charging station quantity planning model based on neural network and electric load forecasting model;Seventh International Conference on Mechatronics and Intelligent Robotics (ICMIR 2023);2023-09-11

5. The Future of Electrical Power Grids: A Direction Rooted in Power Electronics;Energies;2023-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3