Heat Decarbonisation Modelling Approaches in the UK: An Energy System Architecture Perspective

Author:

Scamman DanielORCID,Solano-Rodríguez Baltazar,Pye SteveORCID,Chiu Lai FongORCID,Smith Andrew Z. P.ORCID,Gallo Cassarino TizianoORCID,Barrett MarkORCID,Lowe RobertORCID

Abstract

Energy models have been widely applied to the analysis of energy system decarbonisation to assess the options and costs of a transition to a low carbon supply. However, questions persist as to whether they are able to effectively represent and assess heat decarbonisation pathways for the buildings sector. A range of limitations have been identified, including a poor spatio-temporal resolution, limited representation of behaviour, and restricted representation of the full technical option set. This paper undertakes a review of existing energy models for heat decarbonisation in the UK, applying the novel perspective of energy system architecture (ESA). A set of ESA-related features are identified (including evolvability, flexibility, robustness, and feasibility), and models are reviewed against these features. The review finds that a range of models exist that have strengths across different features of ESA, suggesting that multiple modelling approaches are needed in order to adequately address the heat decarbonisation challenge. However, opportunities to improve existing models and develop new approaches also exist, and a research agenda is therefore proposed.

Funder

UK Research and Innovation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference112 articles.

1. Net Zero: The UK’s Contribution to Stopping Global Warming,2019

2. UK Becomes First Major Economy to Pass Net Zero Emissions Law,2019

3. Technical Summary: Global Warming of 1.5 °C;Allen,2019

4. UK Housing: Fit for the Future?,2019

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3