Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation

Author:

Witaszek KamilORCID,Pilarski Krzysztof,Niedbała GniewkoORCID,Pilarska Agnieszka AnnaORCID,Herkowiak MarcinORCID

Abstract

The production of methane in the anaerobic digestion process is a proven technology, but it is characterized by low cost-effectiveness. The pretreatment of substrates seems to be a promising technology, which may increase the cost-effectiveness of biogas installations. The aim of the study was to investigate the influence of the comminution and extrusion of maize silage and maize straw silage on the course and yield of anaerobic digestion. The use of a pretreatment (comminution, extrusion) is justified when its energy balance is positive. The greatest increase in the methane yield per dry matter (12.4%) was observed after the extrusion of maize straw silage at 175 °C. The change in the methane yield resulting from the extrusion of maize silage and maize straw silage at 150 °C was small and amounted to 6.4% and 9%, respectively. The comminution caused an increase in the methane yield and accelerated the fermentation of substrates. The methane yield from maize silage was 38.4%, whereas the yield from maize straw silage was only 8.3%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3