Online Batch Selection for Enhanced Generalization in Imbalanced Datasets

Author:

Ioannou GeorgeORCID,Alexandridis GeorgiosORCID,Stafylopatis Andreas

Abstract

Importance sampling, a variant of online sampling, is often used in neural network training to improve the learning process, and, in particular, the convergence speed of the model. We study, here, the performance of a set of batch selection algorithms, namely, online sampling algorithms that process small parts of the dataset at each iteration. Convergence is accelerated through the creation of a bias towards the learning of hard samples. We first consider the baseline algorithm and investigate its performance in terms of convergence speed and generalization efficiency. The latter, however, is limited in case of poor balancing of data sets. To alleviate this shortcoming, we propose two variations of the algorithm that achieve better generalization and also manage to not undermine the convergence speed boost offered by the original algorithm. Various data transformation techniques were tested in conjunction with the proposed scheme to develop an overall training method of the model and to ensure robustness in different training environments. An experimental framework was constructed using three naturally imbalanced datasets and one artificially imbalanced one. The results assess the advantage in convergence of the extended algorithm over the vanilla one, but, mostly, show better generalization performance in imbalanced data environments.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3