Information Thermodynamics and Reducibility of Large Gene Networks

Author:

Sarkar SwarnavoORCID,Hubbard Joseph B.,Halter Michael,Plant Anne L.

Abstract

Gene regulatory networks (GRNs) control biological processes like pluripotency, differentiation, and apoptosis. Omics methods can identify a large number of putative network components (on the order of hundreds or thousands) but it is possible that in many cases a small subset of genes control the state of GRNs. Here, we explore how the topology of the interactions between network components may indicate whether the effective state of a GRN can be represented by a small subset of genes. We use methods from information theory to model the regulatory interactions in GRNs as cascading and superposing information channels. We propose an information loss function that enables identification of the conditions by which a small set of genes can represent the state of all the other genes in the network. This information-theoretic analysis extends to a measure of free energy change due to communication within the network, which provides a new perspective on the reducibility of GRNs. Both the information loss and relative free energy depend on the density of interactions and edge communication error in a network. Therefore, this work indicates that a loss in mutual information between genes in a GRN is directly coupled to a thermodynamic cost, i.e., a reduction of relative free energy, of the system.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3