Analysis of Drought Progression Physiognomies in South Africa

Author:

Botai Joel,Botai Christina,de Wit Jaco,Muthoni Masinde,Adeola Abiodun

Abstract

The spatial-temporal variability of drought characteristics and propagation mechanisms in the hydrological cycle is a pertinent topic to policymakers and to the diverse scientific community. This study reports on the analysis of drought characteristics and propagation patterns in the hydrological cycle over South Africa. In particular, the analysis considered daily precipitation and streamflow data spanning from 1985 to 2016, recorded from 74 weather stations, distributed across South Africa and covering the country’s 19 Water Management Areas (WMAs). The results show that all the WMAs experience drought features characterized by an inherent spatial-temporal dependence structure with transition periods categorized into short (1–3 months), intermediate (4–6 months), long (7–12 months) and extended (>12 months) time-scales. Coupled with climate and catchment characteristics, the drought propagation characteristics delineate the WMAs into homogenous zones subtly akin to the broader climatic zones of South Africa, i.e., Savanna, Grassland, Karoo, Fynbos, Forest, and Desert climates. We posit that drought evolution results emanating from the current study provide a new perspective of drought characterization with practical use for the design of drought monitoring, as well as early warning systems for drought hazard preparedness and effective water resources planning and management. Overall, the analysis of drought evolution in South Africa is expected to stimulate advanced drought research topics, including the elusive drought termination typology.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference29 articles.

1. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater;Tallaksen,2004

2. Propagation of Drought: From Meteorological Drought to Agricultural and Hydrological Drought

3. Glossary of Meteorology;Glickman,2000

4. Drought: A Global Assessment,2000

5. Have streamflow droughts in Europe become more severe or frequent?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3