Abstract
Three-dimensional (3D) seismic data and well log data were used to investigate the sandstone architecture of the Middle Jurassic deltaic reservoirs of the Zhetybay Oilfield, Mangeshrak Basin, Kazakhstan. The base-level cycles of different scales were identified and divided using well log and 3D seismic data. Five types of sedimentary boundaries were identified in the mouth bar sandstones. The boundaries divide single mouth bars. Vertically, the spatial distribution of sand bodies can be divided into superposed, spliced, and isolation modes. Laterally, contact modes can be divided into superposition, lateral, and isolation modes. We found that the base-level cycle controls the evolution of the delta front sand body architecture. In the early decline or late rise of the base-level cycle, the superimposed or spliced modes dominate the sand body. By contrast, the lateral or isolation modes dominate the sand body in the late decline or early rise of the base-level cycle. This paper proposes an architecture model of the delta front sand bodies controlled by the base-level cycle. The spatial distribution and morphological variation of deltaic sand bodies could be linked to the base-level cycles.
Funder
China University of Petroleum, Beijing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献