An Empirical Energy Demand Flexibility Metric for Residential Properties

Author:

Crawley Jenny,Manouseli Despina,Mallaburn Peter,Elwell CliffORCID

Abstract

Shifting from heating using fossil fuel combustion to electrified heating, dominated by heat pumps, is central to many countries’ decarbonisation strategy. The consequent increase in electricity demand, combined with that from electric vehicles, and the shift from non-renewable to renewable generation requires increased demand flexibility to support system operation. Demand side response through interrupting heating during peak demands has been widely proposed and simulation modelling has been used to determine the technical potential. This paper proposes an empirical approach to quantifying a building’s potential to operate flexibly, presenting a metric based on measured temperature drop in a dwelling under standard conditions after heating is switched off, using smart meter and internal temperature data. A result was derived for 96% of 193 homes within a test dataset, mean temperature drop of 1.5 °C in 3 h at 15 °C inside-outside temperature differential. An empirical flexibility metric may support decision making and decarbonisation. For households it may support the transition to heat pumps, enabling time of use costs and tariffs to be better understood and system to be specified by installers. Electricity system stakeholders, such as aggregators and DNOs may use it to identify the potential for demand response, managing local networks, infrastructure and aggregation.

Funder

Centre for Research in Energy Demand Solutions

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

1. Net Zero by 2050: A Roadmap for the Global Energy Sector,2021

2. Net Zero by 2050–Data Product,2021

3. From using heat to using work: reconceptualising the zero carbon energy transition

4. Grid management system to solve local congestion;Steegh;Proceedings of the 25th International Conference on Electricity Distribution,2019

5. Predicting the Additional GB Electricity Demand Resulting from a Widespread Uptake of Domestic Heat Pumps;Watson,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3