Effectiveness of Machine Learning Approaches Towards Credibility Assessment of Crowdfunding Projects for Reliable Recommendations

Author:

Shafqat Wafa,Byun Yung-CheolORCID,Park NamjeORCID

Abstract

Recommendation systems aim to decipher user interests, preferences, and behavioral patterns automatically. However, it becomes trickier to make the most trustworthy and reliable recommendation to users, especially when their hardest earned money is at risk. The credibility of the recommendation is of magnificent importance in crowdfunding project recommendations. This research work devises a hybrid machine learning-based approach for credible crowdfunding projects’ recommendations by wisely incorporating backers’ sentiments and other influential features. The proposed model has four modules: a feature extraction module, a hybrid LDA-LSTM (latent Dirichlet allocation and long short-term memory) based latent topics evaluation module, credibility formulation, and recommendation module. The credibility analysis proffers a process of correlating project creator’s proficiency, reviewers’ sentiments, and their influence to estimate a project’s authenticity level that makes our model robust to unauthentic and untrustworthy projects and profiles. The recommendation module selects projects based on the user’s interests with the highest credible scores and recommends them. The proposed recommendation method harnesses numeric data and sentiment expressions linked with comments, backers’ preferences, profile data, and the creator’s credibility for quantitative examination of several alternative projects. The proposed model’s evaluation depicts that credibility assessment based on the hybrid machine learning approach contributes efficient results (with 98% accuracy) than existing recommendation models. We have also evaluated our credibility assessment technique on different categories of the projects, i.e., suspended, canceled, delivered, and never delivered projects, and achieved satisfactory outcomes, i.e., 93%, 84%, 58%, and 93%, projects respectively accurately classify into our desired range of credibility.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Web Wisdom: How to Evaluate and Create Web Page Quality;Alexander,1999

2. Empirical research in on-line trust: a review and critical assessment

3. https://www.mordorintelligence.com/industry-reports/crowdfunding-market

4. https://www.statista.com/outlook/335/100/crowdfunding/worldwide

5. TDAM: A topic-dependent attention model for sentiment analysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3