Pedestrian and Multi-Class Vehicle Classification in Radar Systems Using Rulex Software on the Raspberry Pi

Author:

Daher Ali Walid,Rizik AliORCID,Randazzo AndreaORCID,Tavanti EmanueleORCID,Chible Hussein,Muselli MarcoORCID,Caviglia Daniele D.ORCID

Abstract

Nowadays, cities can be perceived as increasingly dangerous places. Usually, CCTV is one of the main technologies used in a modern security system. However, poor light situations or bad weather conditions (rain, fog, etc.) limit the detection capabilities of image-based systems. Microwave radar detection systems can be an answer to this limitation and take advantage of the results obtained by low-cost technologies for the automotive market. Transportation by car may be dangerous, and every year car accidents lead to the fatalities of many individuals. Humans require automated assistance when driving through detecting and correctly classifying approaching vehicles and, more importantly, pedestrians. In this paper, we present the application of machine learning to data collected by a 24 GHz short-range radar for urban classification. The training and testing take place on a Raspberry Pi as an edge computing node operating in a client/server arrangement. The software of choice is Rulex, a high-performance machine learning package controlled through a remote interface. Forecasts with a varying number of classes were performed with one, two, or three classes for vehicles and one for humans. Furthermore, we applied a single forecast for all four classes, as well as cascading forecasts in a tree-like structure while varying algorithms, cascading the block order, setting class weights, and varying the data splitting ratio for each forecast to improve prediction accuracy. In the experiments carried out for the validation of the presented approach, an accuracy of up to 100% for human classification and 96.67% for vehicles, in general, was obtained. Vehicle sub-classes were predicted with 90.63% accuracy for motorcycles and 77.34% accuracy for both cars and trucks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

1. Making Cities Smarter, Urban Population Is Posing New Set of Complex Security Challengeshttps://www.securitytoday.com/articles/

2. The growth of CCTV: A global perspective on the international diffusion of video surveillance in publicly accessible space;Clive;Surveill. Soc.,2002

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3