Insights from Learning Analytics for Hands-On Cloud Computing Labs in AWS

Author:

Moltó GermánORCID,Naranjo Diana M.ORCID,Segrelles J. DamianORCID

Abstract

Cloud computing instruction requires hands-on experience with a myriad of distributed computing services from a public cloud provider. Tracking the progress of the students, especially for online courses, requires one to automatically gather evidence and produce learning analytics in order to further determine the behavior and performance of students. With this aim, this paper describes the experience from an online course in cloud computing with Amazon Web Services on the creation of an open-source data processing tool to systematically obtain learning analytics related to the hands-on activities carried out throughout the course. These data, combined with the data obtained from the learning management system, have allowed the better characterization of the behavior of students in the course. Insights from a population of more than 420 online students through three academic years have been assessed, the dataset has been released for increased reproducibility. The results corroborate that course length has an impact on online students dropout. In addition, a gender analysis pointed out that there are no statistically significant differences in the final marks between genders, but women show an increased degree of commitment with the activities planned in the course.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Leveraging Data Analytics for Behavioral Research

2. What is Analytics? Definition and Essential Characteristics;Cooper;CETIS Anal. Ser.,2012

3. Analytics in Higher Education: Establishing a Common Language;Van Barneveld;Educ. Learn. Initiat.,2012

4. Learning analytics and educational data mining

5. Improving the Quality and Productivity of the Higher Education Sector Policy and Strategy for Systems-Level Deployment of Learning Analytics Society for Learning Analytics Research;Siemens,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3