Image Reconstruction in Diffuse Optical Tomography Using Adaptive Moment Gradient Based Optimizers: A Statistical Study

Author:

Chakhim NadaORCID,Louzar Mohamed,Lamnii AbdellahORCID,Alaoui Mohammed

Abstract

Diffuse optical tomography (DOT) is an emerging modality that reconstructs the optical properties in a highly scattering medium from measured boundary data. One way to solve DOT and recover the quantities of interest is by an inverse problem approach, which requires the choice of an optimization algorithm for the iterative approximation of the solution. However, the well-established and proven fact of the no free lunch principle holds in general. This paper aims to compare the behavior of three gradient descent-based optimizers on solving the DOT inverse problem by running randomized simulation and analyzing the generated data in order to shade light on any significant difference—if existing at all—in performance among these optimizers in our specific context of DOT. The major practical problems when selecting or using an optimization algorithm in a production context for a DOT system is to be confident that the algorithm will have a high convergence rate to the true solution, reasonably fast speed and high quality of the reconstructed image in terms of good localization of the inclusions and good agreement with the true image. In this work, we harnessed carefully designed randomized simulations to tackle the practical problem of choosing the right optimizer with the right parameters in the context of practical DOT applications, and derived statistical results concerning rate of convergence, speed, and quality of image reconstruction. The statistical analysis performed on the generated data and the main results for convergence rate, reconstruction speed, and quality between three optimization algorithms are presented in the paper at hand.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3