Abstract
CRISPR-Cas systems, widespread in bacteria and archaea, are mainly responsible for adaptive cellular immunity against exogenous DNA (plasmid and phage). However, the latest research shows their involvement in other functions, such as gene expression regulation, DNA repair and virulence. In recent years, they have undergone intensive research as convenient tools for genomic editing, with Cas9 being the most commonly used nuclease. Gene editing may be of interest in biotechnology, medicine (treatment of inherited disorders, cancer, etc.), and in the development of model systems for various genetic diseases. The dCas9 system, based on a modified Cas9 devoid of nuclease activity, called CRISPRi, is widely used to control gene expression in bacteria for new drug biotargets validation and is also promising for therapy of genetic diseases. In addition to direct use for genomic editing in medicine, CRISPR-Cas can also be used in diagnostics, for microorganisms’ genotyping, controlling the spread of drug resistance, or even directly as “smart” antibiotics. This review focuses on the main applications of CRISPR-Cas in medicine, and challenges and perspectives of these approaches.
Funder
Russian Foundation for Basic Research
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献