Non-Intrusive Load Disaggregation Based on a Multi-Scale Attention Residual Network

Author:

Weng Liguo,Zhang Xiaodong,Qian Junhao,Xia MinORCID,Xu Yiqing,Wang Ke

Abstract

Non-intrusive load disaggregation (NILD) is of great significance to the development of smart grids. Current energy disaggregation methods extract features from sequences, and this process easily leads to a loss of load features and difficulties in detecting, resulting in a low recognition rate of low-use electrical appliances. To solve this problem, a non-intrusive sequential energy disaggregation method based on a multi-scale attention residual network is proposed. Multi-scale convolutions are used to learn features, and the attention mechanism is used to enhance the learning ability of load features. The residual learning further improves the performance of the algorithm, avoids network degradation, and improves the precision of load decomposition. The experimental results on two benchmark datasets show that the proposed algorithm has more advantages than the existing algorithms in terms of load disaggregation accuracy and judgments of the on/off state, and the attention mechanism can further improve the disaggregation accuracy of low-frequency electrical appliances.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3