Potential Applications in Relation to the Various Physicochemical Characteristics of Al-Hasa Oasis Clays in Saudi Arabia

Author:

Al-Hawas Ibrahim A.,Hassan Salah A.,AbdelDayem Hany M.

Abstract

In this work, various physicochemical characteristics, e.g., surface properties and mineralogical compositions, of five clays collected from different sites in the Al-Hasa oasis in Saudi Arabia have been investigated. Analysis of the mineralogical compositions of the clays in the study by X-ray diffraction indicated the coexistence of palygorskite, montmorillonite, illite, kaolinite, chlorite, calcite and quartz in different percentages. Thermogravimetric analysis indicated that all studied clays exhibited dehydroxylation temperatures higher than 470 °C. On the other hand, pore size distribution analysis of clays from N2 adsorption indicated the presence of micro- and narrow mesopores (of 1.3–2.8 nm). Furthermore, the capability of the different clays for removal of Pb (II) from aqueous solution has been studied. The adsorption process was described through the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. The Langmuir model was the most suitable compared to the other models in the case of palygorskite- and montmorillonite-rich clays. However, the Temkin model better represented the adsorption process of Pb (II) on calcite-rich clay. The clay sample with 61.0 wt% of palygorskite was found to be the most effective at removing Pb (II), with a maximum removal capacity of 74.07 mg/g at pH 6, with a contact time of 6 h and at 25 °C. Generally, the adsorption mechanism of lead over all the studied clays followed the pseudo-second-order kinetics. On the other hand, the catalytic activity of clays in the study has been tested in methanol conversion. The acidic clays, those containing high amounts of montmorillonite, showed higher selectivity to ethylene, viz., 78.9%, with a methanol conversion of 39.1% at 350 ° C and 0.1 MPa.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3