A Review of Radiomics in Predicting Therapeutic Response in Colorectal Liver Metastases: From Traditional to Artificial Intelligence Techniques

Author:

Alshohoumi FatmaORCID,Al-Hamdani Abdullah,Hedjam Rachid,AlAbdulsalam AbdulRahmanORCID,Al Zaabi AdhariORCID

Abstract

An early evaluation of colorectal cancer liver metastasis (CRCLM) is crucial in determining treatment options that ultimately affect patient survival rates and outcomes. Radiomics (quantitative imaging features) have recently gained popularity in diagnostic and therapeutic strategies. Despite this, radiomics faces many challenges and limitations. This study sheds light on these limitations by reviewing the studies that used radiomics to predict therapeutic response in CRCLM. Despite radiomics’ potential to enhance clinical decision-making, it lacks standardization. According to the results of this study, the instability of radiomics quantification is caused by changes in CT scan parameters used to obtain CT scans, lesion segmentation methods used for contouring liver metastases, feature extraction methods, and dataset size used for experimentation and validation. Accordingly, the study recommends combining radiomics with deep learning to improve prediction accuracy.

Funder

The Research Council

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference75 articles.

1. Español, Basic Information about Colorectal Cancer|CDC. 2022.

2. WCRF International, Colorectal Cancer Statistics|WCRF International. 2022.

3. Automatic colon segmentation using cellular neural network for the detection of colorectal polyps;Kilic;IU-J. Electr. Electron. Eng.,2007

4. Azer, S.A. Challenges Facing the Detection of Colonic Polyps: What Can Deep Learning Do?. Medicina, 2019. 55.

5. Godkhindi, A.M., and Gowda, R.M. Automated detection of polyps in CT colonography images using deep learning algorithms in colon cancer diagnosis. Proceedings of the 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The potential of artificial intelligence and machine learning in precision oncology;Artificial Intelligence, Big Data, Blockchain and 5G for the Digital Transformation of the Healthcare Industry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3