Improved Wireless Medical Cyber-Physical System (IWMCPS) Based on Machine Learning

Author:

Alzahrani Ahmad1ORCID,Alshehri Mohammed2ORCID,AlGhamdi Rayed1ORCID,Sharma Sunil Kumar2ORCID

Affiliation:

1. Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah 11952, Saudi Arabia

Abstract

Medical cyber-physical systems (MCPS) represent a platform through which patient health data are acquired by emergent Internet of Things (IoT) sensors, preprocessed locally, and managed through improved machine intelligence algorithms. Wireless medical cyber-physical systems are extensively adopted in the daily practices of medicine, where vast amounts of data are sampled using wireless medical devices and sensors and passed to decision support systems (DSSs). With the development of physical systems incorporating cyber frameworks, cyber threats have far more acute effects, as they are reproduced in the physical environment. Patients’ personal information must be shielded against intrusions to preserve their privacy and confidentiality. Therefore, every bit of information stored in the database needs to be kept safe from intrusion attempts. The IWMCPS proposed in this work takes into account all relevant security concerns. This paper summarizes three years of fieldwork by presenting an IWMCPS framework consisting of several components and subsystems. The IWMCPS architecture is developed, as evidenced by a scenario including applications in the medical sector. Cyber-physical systems are essential to the healthcare sector, and life-critical and context-aware health data are vulnerable to information theft and cyber-okayattacks. Reliability, confidence, security, and transparency are some of the issues that must be addressed in the growing field of MCPS research. To overcome the abovementioned problems, we present an improved wireless medical cyber-physical system (IWMCPS) based on machine learning techniques. The heterogeneity of devices included in these systems (such as mobile devices and body sensor nodes) makes them prone to many attacks. This necessitates effective security solutions for these environments based on deep neural networks for attack detection and classification. The three core elements in the proposed IWMCPS are the communication and monitoring core, the computational and safety core, and the real-time planning and administration of resources. In this study, we evaluated our design with actual patient data against various security attacks, including data modification, denial of service (DoS), and data injection. The IWMCPS method is based on a patient-centric architecture that preserves the end-user’s smartphone device to control data exchange accessibility. The patient health data used in WMCPSs must be well protected and secure in order to overcome cyber-physical threats. Our experimental findings showed that our model attained a high detection accuracy of 92% and a lower computational time of 13 sec with fewer error analyses.

Funder

Deanship of Scientific Research

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference43 articles.

1. Secure health data sharing for medical cyber-physical systems for healthcare 4.0;Qiu;IEEE J. Biomed. Health Inform.,2020

2. Machine intelligence in healthcare and medical cyber-physical systems: A survey;Shishvan;IEEE Access,2018

3. Sustainable securing of Medical Cyber-Physical Systems for the healthcare of the future;Clemente;Sustain. Comput. Inform. Syst.,2018

4. Efficient NTRU lattice-based certificateless signature scheme for medical cyber-physical systems;Xu;J. Med. Syst.,2020

5. Shishvan, O.R., Zois, D.S., and Soyata, T. (2020). Connected Health in Smart Cities, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3