The Use of Artificial Intelligence for Skin Disease Diagnosis in Primary Care Settings: A Systematic Review

Author:

Escalé-Besa Anna123,Vidal-Alaball Josep234ORCID,Miró Catalina Queralt24ORCID,Gracia Victor Hugo Garcia3,Marin-Gomez Francesc X.25ORCID,Fuster-Casanovas Aïna46ORCID

Affiliation:

1. Centre d’Atenció Primària Navàs-Balsareny, Institut Català de la Salut, 08670 Navàs, Spain

2. Health Promotion in Rural Areas Research Group, Gerència d’Atenció Primària i a la Comunitat de la Catalunya Central, Institut Català de la Salut, 08242 Manresa, Spain

3. Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain

4. Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina, 082424 Manresa, Spain

5. Servei d’Atenció Primària Osona, Gerència Territorial de la Catalunya Central, Institut Català de La Salut, 08500 Vic, Spain

6. eHealth Lab Research Group, School of Health Sciences and eHealth Centre, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain

Abstract

The prevalence of dermatological conditions in primary care, coupled with challenges such as dermatologist shortages and rising consultation costs, highlights the need for innovative solutions. Artificial intelligence (AI) holds promise for improving the diagnostic analysis of skin lesion images, potentially enhancing patient care in primary settings. This systematic review following PRISMA guidelines examined primary studies (2012–2022) assessing AI algorithms’ diagnostic accuracy for skin diseases in primary care. Studies were screened for eligibility based on their availability in the English language and exclusion criteria, with risk of bias evaluated using QUADAS-2. PubMed, Scopus, and Web of Science were searched. Fifteen studies (2019–2022), primarily from Europe and the USA, focusing on diagnostic accuracy were included. Sensitivity ranged from 58% to 96.1%, with accuracies varying from 0.41 to 0.93. AI applications encompassed triage and diagnostic support across diverse skin conditions in primary care settings, involving both patients and primary care professionals. While AI demonstrates potential for enhancing the accuracy of skin disease diagnostics in primary care, further research is imperative to address study heterogeneity and ensure algorithm reliability across diverse populations. Future investigations should prioritise robust dataset development and consider representative patient samples. Overall, AI may improve dermatological diagnosis in primary care, but careful consideration of algorithm limitations and implementation strategies is required.

Funder

Spanish Society of Family and Community Medicine

Fundació Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central

Publisher

MDPI AG

Reference55 articles.

1. The burden of skin disease in the United States;Lim;J. Am. Acad. Dermatol.,2017

2. Skin conditions are the commonest new reason people present to general practitioners in England and Wales;Schofield;Br. J. Dermatol.,2011

3. Dermatology in primary care: Prevalence and patient disposition;Lowell;J. Am. Acad. Dermatol.,2001

4. The Abilities of Primary Care Physicians in Dermatology: Implications for Quality of Care;Federman;Am. J. Manag. Care,1997

5. Assessing diagnostic skill in dermatology: A comparison between general practitioners and dermatologists;Tran;Australas. J. Dermatol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3