Weight Status Prediction Using a Neuron Network Based on Individual and Behavioral Data

Author:

Rousset Sylvie1,Angelo Aymeric12,Hamadouche Toufik12,Lacomme Philippe2ORCID

Affiliation:

1. University Clermont Auvergne, UNH, UMR1019, INRAE, 63000 Clermont Ferrand, France

2. University Clermont Auvergne, LIMOS UMR CNRS 6158, 63000 Clermont Ferrand, France

Abstract

Background: The worldwide epidemic of weight gain and obesity is increasing in response to the evolution of lifestyles. Our aim is to provide a new predictive method for current and future weight status estimation based on individual and behavioral characteristics. Methods: The data of 273 normal (NW), overweight (OW) and obese (OB) subjects were assigned either to the training or to the test sample. The multi-layer perceptron classifier (MLP) classified the data into one of the three weight statuses (NW, OW, OB), and the classification model accuracy was determined using the test dataset and the confusion matrix. Results: On the basis of age, height, light-intensity physical activity and the daily number of vegetable portions consumed, the multi-layer perceptron classifier achieved 75.8% accuracy with 90.3% for NW, 34.2% for OW and 66.7% for OB. The NW and OW subjects showed the highest and the lowest number of true positives, respectively. The OW subjects were very often confused with NW. The OB subjects were confused with OW or NW 16.6% of the time. Conclusions: To increase the accuracy of the classification, a greater number of data and/or variables are needed.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Reference31 articles.

1. Obepi-Roche (2022, December 15). Enquête Epidémiologique Nationale sur le Surpoids et L’obésité Pour la Ligue Contre L’obésité. Available online: https://www.sraenutrition.fr/wp-content/uploads/2021/08/Enquete-epidemiologique-sur-le-suproids-et-lobesite-Odoxa-x-Obepi.pdf.

2. Projected U.S. state-level prevalence of adult obesity and severe obesity;Ward;N. Engl. J. Med.,2019

3. Obesity prevalence in the long-term future in 18 European countries and in the USA;Janssen;Obes. Facts,2020

4. Tappia, P., Ramjiawan, B., and Dhalla, N. (2021). Pathophysiology of Obesity–Induced Health Complications, Springer. Part 1.

5. Not enough fruit and vegetables or too many cookies, candies, salty snacks, and soft drinks?;Cohen;Public Health Rep.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3