Managing Mortality and Aging Risks with a Time-Varying Lee–Carter Model

Author:

Chen Zhongwen1,Shi Yanlin2ORCID,Shu Ao3

Affiliation:

1. College of Economics and Management, Hengyang Normal University, Hengyang 421002, China

2. Department of Actuarial Studies and Business Analytics, Macquarie University, Sydney, NSW 2109, Australia

3. Business School, Hunan University, Changsha 410012, China

Abstract

Influential existing research has suggested that rather than being static, mortality declines decelerate at young ages and accelerate at old ages. Without accounting for this feature, the forecast mortality rates of the popular Lee–Carter (LC) model are less reliable in the long run. To provide more accurate mortality forecasting, we introduce a time-varying coefficients extension of the LC model by adopting the effective kernel methods. With two frequently used kernel functions, Epanechnikov (LC-E) and Gaussian (LC-G), we demonstrate that the proposed extension is easy to implement, incorporates the rotating patterns of mortality decline and is straightforwardly extensible to multi-population cases. Using a large sample of 15 countries over 1950–2019, we show that LC-E and LC-G, as well as their multi-population counterparts, can consistently improve the forecasting accuracy of the competing LC and Li–Lee models in both single- and multi-population scenarios.

Funder

Ministry of Education of the People’s Republic of China

Research Foundation of Education Bureau of Hunan Province, China

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3