Challenges in Implementing the Local Node Infrastructure for a National Federated Machine Learning Network in Radiology

Author:

Jacobs Paul-Philipp1ORCID,Ehrengut Constantin1,Bucher Andreas Michael2,Penzkofer Tobias3ORCID,Lukas Mathias1ORCID,Kleesiek Jens45ORCID,Denecke Timm1ORCID

Affiliation:

1. Department of Diagnostic and Interventional Radiology, University of Leipzig, 04109 Leipzig, Germany

2. Department of Diagnostic and Interventional Radiology, Johann-Wolfgang-v.-Goethe-Universität, 60629 Frankfurt, Germany

3. Department of Radiology, Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany

4. Institute for Artificial Intelligence in Medicine, University Hospital Essen (AöR), 45131 Essen, Germany

5. Medical Faculty, University of Duisburg-Essen, 45122 Essen, Germany

Abstract

Data-driven machine learning in medical research and diagnostics needs large-scale datasets curated by clinical experts. The generation of large datasets can be challenging in terms of resource consumption and time effort, while generalizability and validation of the developed models significantly benefit from variety in data sources. Training algorithms on smaller decentralized datasets through federated learning can reduce effort, but require the implementation of a specific and ambitious infrastructure to share data, algorithms and computing time. Additionally, it offers the opportunity of maintaining and keeping the data locally. Thus, data safety issues can be avoided because patient data must not be shared. Machine learning models are trained on local data by sharing the model and through an established network. In addition to commercial applications, there are also numerous academic and customized implementations of network infrastructures available. The configuration of these networks primarily differs, yet adheres to a standard framework composed of fundamental components. In this technical note, we propose basic infrastructure requirements for data governance, data science workflows, and local node set-up, and report on the advantages and experienced pitfalls in implementing the local infrastructure with the German Radiological Cooperative Network initiative as the use case example. We show how the infrastructure can be built upon some base components to reflect the needs of a federated learning network and how they can be implemented considering both local and global network requirements. After analyzing the deployment process in different settings and scenarios, we recommend integrating the local node into an existing clinical IT infrastructure. This approach offers benefits in terms of maintenance and deployment effort compared to external integration in a separate environment (e.g., the radiology department). This proposed groundwork can be taken as an exemplary development guideline for future applications of federated learning networks in clinical and scientific environments.

Funder

RACOON

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3