Development of a Novel Design and Subsequent Fabrication of an Automated Touchless Hand Sanitizer Dispenser to Reduce the Spread of Contagious Diseases

Author:

Das ArnabORCID,Barua AdittyaORCID,Mohimin Md. AjwadORCID,Abedin JainalORCID,Khandaker Mayeen UddinORCID,Al-mugren Kholoud S.ORCID

Abstract

Background: The use of a touchless automated hand sanitizer dispenser may play a key role to reduce contagious diseases. The key problem of the conventional ultrasonic and infra-red-based dispensers is their malfunctioning due to the interference of sunlight, vehicle sound, etc. when deployed in busy public places. To overcome such limitations, this study introduced a laser-based sensing device to dispense sanitizer in an automated touchless process. Method: The dispensing system is based on an Arduino circuit breadboard where an ATmega328p microcontroller was pre-installed. To sense the proximity, a light-dependent resistor (LDR) is used where the laser light is to be blocked after the placement of human hands, hence produced a sharp decrease in the LDR sensor value. Once the LDR sensor value exceeds the lower threshold, the pump is actuated by the microcontroller, and the sanitizer dispenses through the nozzle. Results and discussion: A novel design and subsequent fabrication of a low-cost, touchless, automated sanitizer dispenser to be used in public places, was demonstrated. The overall performance of the manufactured device was analyzed based on the cost and power consumption, and environmental factors by deploying it in busy public places as well as in indoor environment in major cities in Bangladesh, and found to be more efficient and cost-effective compared to other dispensers available in the market. A comprehensive discussion on this unique design compared to the conventional ultrasonic and infra-red based dispensers, is presented to show its suitability over the commercial ones. The guidelines of the World Health Organization are followed for the preparation of sanitizer liquid. A clear demonstration of the circuitry connections is presented herein, which facilitates the interested individual to manufacture a cost-effective dispenser device in a relatively short time and use it accordingly. Conclusion: This study reveals that the LDR-based automated hand sanitizer dispenser system is a novel concept, and it is cost-effective compared to the conventional ones. The presented device is expected to play a key role in contactless hand disinfection in public places, and reduce the spread of infectious diseases in society.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Construction of an automated hand sanitizer dispenser used against transmissible diseases;Practical Design and Applications of Medical Devices;2024

2. Machine Learning Regression Models for Real-Time Touchless Interaction Applications;2023 IEEE 8th International Conference On Software Engineering and Computer Systems (ICSECS);2023-08-25

3. Application of Ultrasonic Sensor and IR Sensor in Automatic Alcohol Hand Sanitizer;Sensors and Materials;2023-04-27

4. A thin acoustic touchless sensor using flexural vibration;Japanese Journal of Applied Physics;2023-02-16

5. Acoustic touchless sensor using the flexural vibration of a plate;Japanese Journal of Applied Physics;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3