A Panel-Agnostic Strategy ‘HiPPo’ Improves Diagnostic Efficiency in the UK Genomic Medicine Service

Author:

Seaby Eleanor G.1234,Thomas N. Simon5,Hunt David1,Baralle Diana1ORCID,Rehm Heidi L.26,O’Donnell-Luria Anne236,Ennis Sarah1ORCID

Affiliation:

1. Human Development and Health, Faculty of Medicine, University Hospital Southampton, Southampton SO16 6YD, Hampshire, UK

2. Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA

3. Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA

4. Paediatric Infectious Diseases, Imperial College London, London W2 1NY, UK

5. Wessex Regional Genomics Laboratory, Salisbury NHS Foundation Trust, Salisbury SP2 8BJ, UK

6. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA

Abstract

Genome sequencing is available as a clinical test in the UK through the Genomic Medicine Service (GMS). The GMS analytical strategy predominantly filters genome data on preselected gene panels. Whilst this reduces variants requiring assessment by reporting laboratories, pathogenic variants outside applied panels may be missed, and variants in genes without established disease–gene relationships are largely ignored. This study compares the analysis of a research exome to a GMS clinical genome for the same patients. For the research exome, we applied a panel-agnostic approach filtering for variants with High Pathogenic Potential (HiPPo) using ClinVar, allele frequency, and in silico prediction tools. We then restricted HiPPo variants to Gene Curation Coalition (GenCC) disease genes. These results were compared with the GMS genome panel-based approach. Twenty-four participants from eight families underwent parallel research exome and GMS genome sequencing. Exome HiPPo analysis identified a similar number of variants as the GMS panel-based approach. GMS genome analysis returned two pathogenic variants and one de novo variant. Exome HiPPo analysis returned the same variants plus an additional pathogenic variant and three further de novo variants in novel genes, where case series are underway. When HiPPo was restricted to GenCC disease genes, statistically fewer variants required assessment to identify more pathogenic variants than reported by the GMS, giving a diagnostic rate per variant assessed of 20% for HiPPo versus 3% for the GMS. With UK plans to sequence 5 million genomes, strategies are needed to optimise genome analysis beyond gene panels whilst minimising the burden of variants requiring clinical assessment.

Funder

Kerkut Charitable Trust

Foulkes Fellowship

University of Southampton’s Presidential Scholarship Award

National Human Genome Research Institute

National Institute of Health Research (NIHR) Research Professorship

University Hospital of Southampton NHS Foundation Trust

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3