Melanoma Detection Using Deep Learning-Based Classifications

Author:

Alwakid GhadahORCID,Gouda WalaaORCID,Humayun MamoonaORCID,Sama Najm UsORCID

Abstract

One of the most prevalent cancers worldwide is skin cancer, and it is becoming more common as the population ages. As a general rule, the earlier skin cancer can be diagnosed, the better. As a result of the success of deep learning (DL) algorithms in other industries, there has been a substantial increase in automated diagnosis systems in healthcare. This work proposes DL as a method for extracting a lesion zone with precision. First, the image is enhanced using Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) to improve the image’s quality. Then, segmentation is used to segment Regions of Interest (ROI) from the full image. We employed data augmentation to rectify the data disparity. The image is then analyzed with a convolutional neural network (CNN) and a modified version of Resnet-50 to classify skin lesions. This analysis utilized an unequal sample of seven kinds of skin cancer from the HAM10000 dataset. With an accuracy of 0.86, a precision of 0.84, a recall of 0.86, and an F-score of 0.86, the proposed CNN-based Model outperformed the earlier study’s results by a significant margin. The study culminates with an improved automated method for diagnosing skin cancer that benefits medical professionals and patients.

Funder

Deanship of Scientific Research at Jouf University

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Melanoma detection using Egret search golden optimization – Deep convolutional neural network model;Biomedical Signal Processing and Control;2024-10

2. Automated Skin Cancer Screening Using High-Performance Convolutional Neural Networks and Discrete Cosine Transform;2024 International Telecommunications Conference (ITC-Egypt);2024-07-22

3. Skin Cancer Detection Based on Transfer Learning Techniques;2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP);2024-07-11

4. MpoxNet: dual-branch deep residual squeeze and excitation monkeypox classification network with attention mechanism;Frontiers in Cellular and Infection Microbiology;2024-06-07

5. A hybrid machine learning model for skin disease classification using discrete wavelet transform and gray level co-occurrence matrix (GLCM);Multimedia Tools and Applications;2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3