A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques

Author:

Aljohani Abeer,Alharbe NawafORCID

Abstract

Coronavirus disease, frequently referred to as COVID-19, is a contagious and transmittable disease produced by the SARS-CoV-2 virus. The only solution to tackle this virus and reduce its spread is early diagnosis. Pathogenic laboratory tests such as the polymerase chain reaction (PCR) process take a long time. Also, they regularly produce incorrect results. However, they are still considered the critical standard for detecting the virus. Hence, there is a solid need to evolve computer-assisted diagnosis systems capable of providing quick and low-cost testing in areas where traditional testing procedures are not feasible. This study focuses on COVID-19 detection using X-ray images. The prime objective is to introduce a computer-assisted diagnosis (CAD) system to differentiate COVID-19 from healthy and pneumonia cases using X-ray image sequences. This work utilizes standard transfer-learning techniques for COVID-19 detection. It proposes the master–slave architecture using the most state-of-the-art Densenet201 and Squeezenet1_0 techniques for classifying the COVID-19 virus in chest X-ray image sequences. This paper compares the proposed models with other standard transfer-learning approaches for COVID-19. The performance metrics demonstrate that the proposed approach outperforms standard transfer-learning approaches. This research also fine-tunes hyperparameters and predicts the optimized learning rate to achieve the highest accuracy in the model. After fine-tuning the learning rate, the DenseNet201 model retrieves an accuracy of 83.33%, while the fastest model is SqueezeNet1_0, which retrieves an accuracy of 80%.

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3