Disclosing Critical Voice Features for Discriminating between Depression and Insomnia—A Preliminary Study for Developing a Quantitative Method

Author:

Lin Ray F.ORCID,Leung Ting-Kai,Liu Yung-Ping,Hu Kai-Rong

Abstract

Background: Depression and insomnia are highly related—insomnia is a common symptom among depression patients, and insomnia can result in depression. Although depression patients and insomnia patients should be treated with different approaches, the lack of practical biological markers makes it difficult to discriminate between depression and insomnia effectively. Purpose: This study aimed to disclose critical vocal features for discriminating between depression and insomnia. Methods: Four groups of patients, comprising six severe-depression patients, four moderate-depression patients, ten insomnia patients, and four patients with chronic pain disorder (CPD) participated in this preliminary study, which aimed to record their speaking voices. An open-source software, openSMILE, was applied to extract 384 voice features. Analysis of variance was used to analyze the effects of the four patient statuses on these voice features. Results: statistical analyses showed significant relationships between patient status and voice features. Patients with severe depression, moderate depression, insomnia, and CPD reacted differently to certain voice features. Critical voice features were reported based on these statistical relationships. Conclusions: This preliminary study shows the potential in developing discriminating models of depression and insomnia using voice features. Future studies should recruit an adequate number of patients to confirm these voice features and increase the number of data for developing a quantitative method.

Funder

Ministry of Science and Technology, Taiwan

Hospital and Social Welfare Organizations Administration Commission, Ministry of Health and Welfare

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3