Affiliation:
1. National Key Laboratory of Electro-Mechanics Engineering and Control, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100010, China
2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
Abstract
Background: Wound treatment in emergency care requires the rapid assessment of wound size by medical staff. Limited medical resources and the empirical assessment of wounds can delay the treatment of patients, and manual contact measurement methods are often inaccurate and susceptible to wound infection. This study aimed to prepare an Automatic Wound Segmentation Assessment (AWSA) framework for real-time wound segmentation and automatic wound region estimation. Methods: This method comprised a short-term dense concatenate classification network (STDC-Net) as the backbone, realizing a segmentation accuracy–prediction speed trade-off. A coordinated attention mechanism was introduced to further improve the network segmentation performance. A functional relationship model between prior graphics pixels and shooting heights was constructed to achieve wound area measurement. Finally, extensive experiments on two types of wound datasets were conducted. Results: The experimental results showed that real-time AWSA outperformed state-of-the-art methods such as mAP, mIoU, recall, and dice score. The AUC value, which reflected the comprehensive segmentation ability, also reached the highest level of about 99.5%. The FPS values of our proposed segmentation method in the two datasets were 100.08 and 102.11, respectively, which were about 42% higher than those of the second-ranked method, reflecting better real-time performance. Moreover, real-time AWSA could automatically estimate the wound area in square centimeters with a relative error of only about 3.1%. Conclusion: The real-time AWSA method used the STDC-Net classification network as its backbone and improved the network processing speed while accurately segmenting the wound, realizing a segmentation accuracy–prediction speed trade-off.
Funder
Natural Science Foundation of Chongqing
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management
Reference35 articles.
1. Information: The battlefield of the future;Burnette;Surf. Warf.,1995
2. Measuring surface area of skin lesions with 2d and 3d algo-rithms;Topfer;Int. J. Biomed. Imaging,2019
3. A lightweight approach to 3d measurement of chronic wounds;Shirley;J. WSCG,2018
4. Semantic segmentation of smartphone wound images: Comparative analysis of ahrf and cnn-based approaches;Wagh;IEEE Access,2020
5. A novel and accurate technique of photographic wound measurement;Shetty;Indian J. Plast. Surg. Off. Publ. Assoc. Plast. Surg. India,2012
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Fast Rooftop Extraction Deep Learning Method based on PP-LiteSeg for UAV Imaginary;2023 International Conference on Artificial Intelligence and Automation Control (AIAC);2023-11-17