Technology to Support Aging in Place: Older Adults’ Perspectives

Author:

Wang Shengzhi,Bolling Khalisa,Mao Wenlin,Reichstadt Jennifer,Jeste Dilip,Kim Ho-Cheol,Nebeker Camille

Abstract

The U.S. population over 65 years of age is increasing. Most older adults prefer to age in place, and technologies, including Internet of things (IoT), Ambient/Active Assisted Living (AAL) robots and other artificial intelligence (AI), can support independent living. However, a top-down design process creates mismatches between technologies and older adults’ needs. A user-centered design approach was used to identify older adults’ perspectives regarding AAL and AI technologies and gauge interest in participating in a co-design process. A survey was used to obtain demographic characteristics and assess privacy perspectives. A convenience sample of 31 retirement community residents participated in one of two 90-min focus group sessions. The semi-structured group interview solicited barriers and facilitators to technology adoption, privacy attitudes, and interest in project co-design participation to inform technology development. Focus group sessions were audiotaped and professionally transcribed. Transcripts were reviewed and coded to identify themes and patterns. Descriptive statistics were applied to the quantitative data. Identified barriers to technology use included low technology literacy, including lack of familiarity with terminology, and physical challenges, which can make adoption difficult. Facilitators included an eagerness to learn, interest in co-design, and a desire to understand and control their data. Most participants identified as privacy pragmatics and fundamentalists, indicating that privacy is important to older adults. At the same time, they also reported a willingness to contribute to the design of technologies that would facilitate aging independently. There is a need to increase technology literacy of older adults along with aging literacy of technologists.

Funder

UC San Diego Health Sciences

IBM

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3