Author:
Wang Yinghao,Lu Chunfu,Zhang Mingyu,Wu Jianfeng,Tang Zhichuan
Abstract
Instantly and accurately identifying the state of dynamic muscle fatigue in resistance training can help fitness trainers to build a more scientific and reasonable training program. By investigating the isokinetic flexion and extension strength training of the knee joint, this paper tried to extract surface electromyogram (sEMG) features and establish recognition models to classify muscle states of the target muscles in the isokinetic strength training of the knee joint. First, an experiment was carried out to collect the sEMG signals of the target muscles. Second, two nonlinear dynamic indexes, wavelet packet entropy (WPE) and power spectrum entropy (PSE), were extracted from the obtained sEMG signals to verify the feasibility of characterizing muscle fatigue. Third, a convolutional neural network (CNN) recognition model was constructed and trained with the obtained sEMG experimental data to enable the extraction and recognition of EMG deep features. Finally, the CNN recognition model was compared with multiple support vector machines (Multi-SVM) and multiple linear discriminant analysis (Multi-LDA). The results showed that the CNN model had a better classification accuracy. The overall recognition accuracy of the CNN model applied to the test data (91.38%) was higher than that of the other two models, which verified that the CNN dynamic fatigue recognition model based on subjective and objective information feedback had better recognition performance. Furthermore, training on a larger dataset could further improve the recognition accuracy of the CNN recognition model.
Funder
Basic Scientific Research Project of Humanities and Social Sciences (Interdisciplinary Research Project) of Zhejiang University of Technology
National Social Science Fund of China
Key Research and Development Program of Zhejiang Province
2019 Humanities and Social Sciences Research Program of the Ministry of Education
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献