Author:
Zhi Weijia,Wang Haoyu,Zou Yong,Xu Xinping,Yu Ning,Zhu Yuyang,Ren Yanling,Ma Lizhen,Qiu Yefeng,Hu Xiangjun,Wang Lifeng
Abstract
The high level noise caused by intense acoustic weapons and blasting is a common source of acute acoustic trauma faced by some special environmental personnel. Studies have shown that high level noise can cause auditory and non-auditory effects. However, there are few reports on the biological effects, especially the non-auditory effects of acute high level noise exposure in simulated special working environments, and the great differences between experimental animals and human beings make it difficult to extrapolate from research conclusions. In this study, macaque monkeys were used to detect the effects of acute high level noise exposure on hearing, cognition, and cardiovascular function. Auditory brainstem response, auditory P300, and electrocardiogram (ECG) of macaque monkeys were measured. Results showed that acute high level noise exposure caused permanent hearing threshold shifts; partial hearing loss which couldn’t recover to normal levels in the detection period; pathological changes in T wave and QRS complexes; and large fluctuations in cognitive ability after exposure, which finally recovered to normal. These alterations may be a combination of effects caused by stress-induced neuroendocrine dysfunction and mechanical damage of auditory organs. To elaborate the exact mechanism, further studies are still needed. Meanwhile, positive measures should be taken to reduce the incidence of acute high level noise injury.
Funder
Logistics Research Program
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献