Abstract
As an indispensable part of contemporary medical services, Internet-based medical platforms can provide patients with a full range of multi-disciplinary and multi-modal treatment services. Along with the emergence of many healthcare influencers and the increasing connection between online and offline consultations, the operation of individual physicians and their teams on Internet-based medical platforms has started to attract a lot of attention. The purpose of this paper is to, based on an Internet platform, study how the information on physicians’ homepages influences patients’ consultation behavior, so as to provide suggestions for the construction of physicians’ personal websites. We distinguish variables into strong- and weak-ties types, dependent on whether deep social interactions between physicians and patients have happened. If there exist further social interactions, we define the variable as the “strong ties” type, otherwise, “weak ties”. The patients’ consultation behavior will be expressed as the volume of online consultation, i.e., the number of patients. We obtained the strong and weak ties information of each physician based on EWM (entropy weight method), so as to establish a regression model with explained variable, i.e., the number of patients, and three explanatory variables, i.e., the strong and weak ties information, and their interaction term. The estimation results verified our hypotheses and proved to be robust. It showed that both strong and weak ties information can positively influence patients’ consultation behavior, and the influence of weak ties information is greater. Regarding the positive influence of strong and weak ties, we found a trade off effect between them. Based on the results, we finalize with some suggestions on how to improve a physician’s online medical consultation volume.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
National Social Science Foundation
Subject
Health Information Management,Health Informatics,Health Policy,Leadership and Management