Abstract
The study of artificial neural networks (ANN) has undergone a tremendous revolution in recent years, boosted by deep learning tools. The presence of a greater number of learning tools and their applications, in particular, favors this revolution. However, there is a significant need to deal with the issue of implementing a systematic method during the development phase of the ANN to increase its performance. A multilayer feedforward neural network (FNN) was proposed in this paper to predict the cell migration assay on cisplatin-sensitive and cisplatin-resistant (CisR) ovarian cancer (OC) cell lines via scratch wound healing assay. An FNN training algorithm model was generated using the MATLAB fitting function in a MATLAB script to accomplish this task. The input parameters were types of cell lines, times, and wound area, and outputs were relative wound area, percentage of wound closure, and wound healing speed. In addition, we tested and compared the initial accuracy of various supervised learning classifier and support vector regression (SVR) algorithms. The proposed ANN model achieved good agreement with the experimental data and minimized error between the estimated and experimental values. The conclusions drawn demonstrate that the developed ANN model is a useful, accurate, fast, and inexpensive method to predict cancerous cell migration characteristics evaluated via scratch wound healing assay.
Funder
National Research Foundation of Korea
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献