Development and Validation of a Risk-Prediction Nomogram for Chronic Low Back Pain Using a National Health Examination Survey: A Cross-Sectional Study

Author:

Kim Jung Guel1,Park Sang-Min1ORCID,Kim Ho-Joong1ORCID,Yeom Jin S.1

Affiliation:

1. Spine Center and Department of Orthopedic Surgery, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea

Abstract

Background: Several prognostic factors have been reported for chronic low back pain (CLBP). However, there are no studies on the prediction of CLBP development in the general population using a risk prediction model. This cross-sectional study aimed to develop and validate a risk prediction model for CLBP development in the general population, and to create a nomogram that can help a person at risk of developing CLBP to receive appropriate counseling on risk modification. Methods: Data on CLBP development, demographics, socioeconomic history, and comorbid health conditions of the participants were obtained through a nationally representative health examination and survey from 2007 to 2009. Prediction models for CLBP development were derived from a health survey on a random sample of 80% of the data and validated in the remaining 20%. After developing the risk prediction model for CLBP, the model was incorporated into a nomogram. Results: Data for 17,038 participants were analyzed, including 2693 with CLBP and 14,345 without CLBP. The selected risk factors included age, sex, occupation, education level, mid-intensity physical activity, depressive symptoms, and comorbidities. This model had good predictive performance in the validation dataset (concordance statistic = 0.7569, Hosmer–Lemeshow chi-square statistic = 12.10, p = 0.278). Based on our model, the findings indicated no significant differences between the observed and predicted probabilities. Conclusions: The risk prediction model presented by a nomogram, which is a score-based prediction system, can be incorporated into the clinical setting. Thus, our prediction model can help individuals at risk of developing CLBP to receive appropriate counseling on risk modification from primary physicians.

Funder

SNUBH Research Fund

Publisher

MDPI AG

Subject

Health Information Management,Health Informatics,Health Policy,Leadership and Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3